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S1 Supplement to Methods

S1.1 General Designs for S0

Because the cell types assembled in S0 potentially involve hierarchical relationships corresponding to
cell lineage, designs that are more general than a one-way ANOVA parameterization may be necessary
for w. If cell-type interpretations can be extracted from S0 via some d0 × d∗0 contrast matrix L (i.e.
B0L identifies the mean methylation for d∗0 cell types), then interpretations can be obtained by simply

replacing B̂0 with B̂0L in the projection used to estimate γ0 and Γ and their standard errors.
As an example, consider the case of CD4+ and CD8+ T cells, both of which are the primary com-

ponents of the T-lymphocyte group. Suppose a sample of purified CD4+ T cells is prepared, another
sample of purified CD8+ T cells, and finally a sample of T-lymphocyte cells that have not been purified
to more specific lineages. Such was the case for S0 in the examples. The CD4+ sample may be iden-
tified as w0h = (1, 1, 0)T, the CD8+ sample as w0h = (1, 0, 1)T, and the latter, less specific sample as
w0h = (1, 0, 0)T. Then an appropriate contrast L for identifying CD4+ and CD8+ samples would be
constructed as a 3× 2 matrix with columns (1, 1, 0)T and (1, 0, 1)T. This approach was used in all of the
data examples, and was also employed in the simulations.

S1.2 Estimation Details

Here we provide details on estimation, introducing a two-stage estimation procedure. The first stage
of analysis involves estimation of B0 and B1 by appropriate linear models, e.g. ordinary least squares

(OLS) regression estimator B̂T
0 =

[∑n0

h=1 z0hz
T
0h

]−1 [∑n0

h=1 zT
0hY

T
0h

]
and a similar estimator for (µ̂1, B̂1)T;

a procedure such as limma; or else locus-by-locus linear mixed effects models that adjust for technical
(e.g. chip) effects. The second stage of analysis, estimation of γ̂0 and Γ̂, proceeds as follows:

(γ̂0, Γ̂
T

)T = B̂T
1 B̃0(B̃T

0 B̃0)−1, (S1)

where B̃0 = (1m, B̂0). Let r̂γ = B̂1 − 1mγ̂0 − B̂0Γ̂, Σ̂γ ≡ (σ̂
(γ)
rs )rs = (m − d0 − 1)−1r̂T

γ r̂γ , V0 =

m(B̃T
0 B̃0)−1, and V0 = (v

(0)
rs )rs. Naive standard error estimates for the (r, s)th element of (γ̂0, Γ̂

T
)

can be obtained by computing (m−1v
(0)
ss σ̂

(γ)
rr )1/2. However, the naive standard error estimates fail to

account for the variability in estimating B̂0 and B̂1, and are consequently biased, as we demonstrate in
the simulations.
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A simple alternative is to use a nonparametric bootstrap procedure. For each bootstrap iteration t,
we sample with replacement from S1, (or sample errors in a manner consistent with a hierarchical exper-

imental design, e.g. taking into account chip effects), to obtain S
(t)
1 . From S

(t)
1 , we obtain an estimate

B̂
(t)
1 , after which we compute γ̂

(t)
0 and Γ̂

(t)
by replacing B̂1 with B̂

(t)
1 in (S1). After resampling a large

number T times, standard errors can easily be obtained empirically from the bootstrap sets {γ̂(t)
0 }t=1,...,T

and {Γ̂
(t)
}t=1,...,T . We will call this method of estimation the “single bootstrap” to distinguish it from

an alternative that accounts for variability in estimation of B̂0 as well.
Because S0 will typically consist of small sample sizes per cell type, a nonparametric bootstrap

procedure for estimating variation in B̂0 may not perform well. We therefore use a parametric bootstrap.

Let Ωj be the variance-covariance matrix for the jth row of B̂0. We form a resampled matrix B̂
(t)
0 by

adding, to each row j of B̂0, a zero-mean multivariate normal vector with variance-covariance Ωj , or a

corresponding multivariate t-distribution with n0−d0 degrees of freedom. Then we compute γ̂
(t)
0 and Γ̂

(t)

from (S1) by replacing B̂0 with B̂
(t)
0 (in addition to the previously mentioned replacement). We will refer

to this method as the “double bootstrap”. Note that the double bootstrap ignores correlation between
CpG sites within a single validation sample, but given the relative purity assumed for these samples and
adequate correction for technical effects, this should be reasonable to first order. As we demonstrated in
the data examples and simulations, there is negligible difference between the single and double bootstrap,
so the incorporation of additional complexity to model cross-CpG correlations is unlikely to produce much
benefit. However, the double-bootstrap has the additional benefit over the single-bootstrap, in that it
can be used to assess bias due to measurement error (variability) in B̂0.

S2 Bias

Here we describe several potential sources of bias in the proposed methodology, presenting the underlying
theoretical considerations, as well as a sensitivity analysis based on these considerations. The first
form of bias, from measurement error, is easily assessed using the double-bootstrap procedure described
above. Below we provide a detailed mathematical treatment of possible biases induced by biological
non-orthogonality. We end with a discussion of potential bias resulting from age-related changes in DNA
methylation measured in the validation specimens.

S2.1 Theory

Consider a univariate z1i representing case/control status, where δ ≡ ξ(1) − ξ(0) = B0α for some d0 × 1
vector α 6= 0; i.e. δ is the mean difference in DNA methylation between a case and control, contributed by
cell mixtures that remain uncharacterized or non-cell-specific methylation. In such a situation, there will
be a bias equal to α in estimating the mixture differences. Non-orthogonal δ may arise from two distinct

sources. One occurs when some cell types have not been profiled in S0, so that
∑d0
l=0 ω

(z)
l < 1. The

other may arise when some non-cell-mediated biological process (i.e. distinct from a change in cellular
mixtures) nevertheless results in methylation profiles that appear similar to those that distinguish cell
types profiled in S0. To this end, we elaborate model (4) in the main text as follows:

E(Y1i|z1i1 = z) =

d0∑
l=1

(B0εl + λ
(z)
l )ω

(z)
l +

Q∑
q=1

(µ̃q + λ̃
(z)

q )ω̃(z)
q , (S2)

where q ∈ {1, ..., Q} indexes unprofiled cell types (or free DNA), each with methylation profile µ̃q, and in

mixture proportions ω
(z)
l and ω̃

(z)
q ,

∑d0
l=1 ω

(z)
l +

∑Q
q=1 ω̃

(z)
q = 1. Here λ(z) denotes an “abnormal”, or at

least non-functional, non-cell-mediated process that is specific to disease status (but may affect different
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cell types in different degrees of intensity). Let P = (B̃T
0 B̃0)−1B̃T

0 , and denote difference between case

and control parameters using ∆, e.g. ∆ωl = ω
(1)
l −ω

(0)
l and ∆E(Y1i) = E(Y1i|z1i1 = 1)−E(Y1i|z1i1 = 0).

It follows from (S2) that

P∆E(Y1i) =

d0∑
l=1

εl∆ωl +

Q∑
q=1

Pµ̃q∆ω̃q +

d0∑
l=1

P∆(λlωl) +

Q∑
q=1

P∆(λ̃qω̃q). (S3)

Note that the values ∆ω̃q may need to shift in order to accommodate any shifts in ∆ωl, since the model

constrains
∑d0
l=1 ∆ωl +

∑Q
q=1 ∆ω̃q = 0. The first term on the right hand side of (S3) is the target

quantity, identifying the desired mixture weights. The second term will be negligible if all profiles µ̃q are
approximately orthogonal to the columns of B0, or else the differences ∆ω̃q are all small. This condition

will be satisfied if S0 is exhausive in the sense that 1−
∑d0
l=1 ω

(z)
l is negligible.

Mathematically, it is difficult to further characterize the latter two terms, without specifying what
kinds of non-cell-mediated processes are likely. For example, even if ∆λ̃q = 0 for a particular value of
q, it may nevertheless still produce a bias if ∆ω̃q 6= 0. Conversely, even if ∆ωl = 0, bias can result
from a nonzero difference ∆λl (e.g. different methylation intensities at island shores due to distinct risk
profiles) if ∆λl is not annihilated by P. Only processes that are equal in intensity in both cases and
controls and across all cell types will be differenced out of (S3). Thus, a key consideration is whether P
annihilates the methylation signature corresponding to a given non-cell-mediated biological process. In
order to examine this issue more carefully, we adopt a Bayesian view, attempting to characterize a prior
expectation of bias as a function of prior probabilities for individual CpG sites. Our goal, in part, is to
understand the potential for bias, given the number m of CpG sites chosen to be measured in S0, with
the goal of selecting m in a manner consistent with minimizing bias.

Assume that the CpGs under consideration are ordered in advance (e.g. randomly or by F-statistic

Fj = d−1
0 B̂0j·Ω

−1
j B̂T

0j·, and explicitly write the dependence of trHm = B̃T
0 B̃0 on m. If the CpGs

are randomly ordered, then trHm = O(m), but otherwise it is possible that trHm = O(m1−ζ), ζ > 0,
reflecting a diminishing rate of return by adding additional non-informative CpG sites. Now we decompose
δ =

∑d0
l=1 P∆(λlωl) +

∑Q
q=1 P∆(λ̃qω̃q) by the number k of CpG sites affected by all alterations that

distinguish cases from controls. Fix k ∈ Jm = {1, ...,m}; each of the C(m, k) = m!/[k!(m − k)!] subsets
Jkl ⊂ Jm of k indices corresponds to a vector δkl representing the mean methylation difference between
case and control over all systematic biological processes that result in changes at the k specific CpG sites
represented by the k indices, and only those k CpG sites. Thus δkl has at most k nonzero values. The
bias resulting from such processes is H−1

m B̃T
0 δkl = O(kmζ−1). We assume a prior probability πkl that

the subset Jkl could correspond to one or more biological processes that distinguish cases from controls.
It follows from this view that the prior expectation of δ is

E[δ|(πkl)kl] =

m∑
k=1

C(m,k)∑
l=1

πklδkl = O

 m∑
k=1

C(m,k)∑
l=1

πklkm
ζ−1

 . (S4)

If a prior probability over all sets of CpG sites in the genome is constructed so that CpG sites are
considered independent, and each CpG site is assigned a uniform prior probability of π0, then πkl ≡
πk0 (1− π0)m−k and, from (S4),

E(δ|π0) = O

(
mζ

m∑
k=1

C(m− 1, k − 1)πk0 (1− π0)m−k

)
= π0(1− π0)O(mζ). (S5)

It is interesting to note that the bias does not depend on m if trHm = O(m), i.e. random ordering.
However, while random ordering renders the size of E(δ|π0) theoretically independent of m, it does so
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at the cost of including many potentially noninformative CpGs, early on at low values of m, and these
may be possible sources of bias in practice, without offering any modeling benefit in return. If the CpG
sites are ordered by level of informativeness, then potentially Hm = O(m1−ζ), and there will be a small
increasing prior expectation of bias, motivating judicious choice of m. The key, then, is to order the
CpGs in terms of their ability to distinguish different types profiled in S0, choosing m large enough to
distinguish all signatures from one another, but small enough that the E(δ|π0) is reasonably low, in a
relative sense. Naturally, different choices of prior πkl in (S4) will lead to different conclusions about the
magnitude of bias. If the set Jm of CpG sites used in S0 and S1 oversample those known to have less
modifiable methylation states, e.g. away from so-called shore regions [1], then π0 is effectively lowered,
and so will be the corresponding expected prior bias. It is worth emphasizing that this analysis concerns
only a Bayesian prior, not the actual biological truth. In our choice of CpG sites among those assayed
in S0 and S1, we might end up unlucky enough to have included a number of sites that also happen to
represent systematic, non-cell-mediated biological differences between cases and controls in S1, in which
case biased estimates will be inevitable. In summary, however, we can exert some control over bias in
the proposed estimation procedure by selecting a sufficiently exhaustive list of cell types to profile in S0,
and by choosing m judiciously.

S2.2 Application: Analysis of Sensitivity to Bias

While the bias estimates evident from the double-bootstrap procedure admit the possibility of correcting
the bias arising from measurement error, there is no statistical procedure for correcting the other pos-
sible sources of bias, those arising from unprofiled cell types and non-cell-mediated profile differences,
i.e. methylation difference signatures δ with nonzero projection onto the space spanned by the WBC
signatures. However, it is possible to conduct a sensitivity analysis using the theory presented above.
Here, we describe such an analysis for the HNSCC data set presented in the main text.

For each value of k ∈ Jm, we randomly sampled k elements, J∗k ⊂ Jm without replacement, then

sampled k rows of B̂1 without replacement, set δ∗ equal to the m×d1 zero matrix, and finally substituted
the rows indicated by J∗k by the k rows selected from B̂1. The matrix δ∗ served as a representative of
the sum of processes having systematic methylation changes at k locations, of total magnitude consistent
with the observed data (under the conservative assumption that no systematic methylation difference is

cell mediated), and α∗ = (B̃T
0 B̃0)−1B̃T

0 δ
∗ represented the corresponding bias in Γ̂. If, as in this situation,

we were interested in assessing the sensitivity to bias in column of B1 (i.e. Case Status), we could simply
delete the uninteresting columns of δ∗ or α∗. Replicating this resampling procedure 100, 000 times, we
generated an approximation to the distribution of possible biases corresponding to processes involving
exactly k CpG sites.

Figure S1 displays the results of such an analysis, showing the distribution of (α∗Tα∗)−1/2 for various
values of k. Note that the relationship of median values to m was consistent with the theory presented
in Section 3.3. In fact, the median values of (α∗Tα∗) had an almost perfect linear relationship with m
(data not shown). The magnitude of the bias was small: for the more likely low values of k, the bias was
0.1 to 0.25 of a percentage point. In addition, this analysis was conseravative in that it assumed all of
the effect in B1 was due to non-cell-mediated processes, a strongly conservative assumption.

In addition, for various choices of π0 over a range of small magnitudes, we computed via iterated
expectation the expected bias over the uniform posterior implied by π0, first by computing the mean
bias for each choice of k, then forming the expectation over the binomial distribution Bin(100, π0).
As suggested in the previous appendix section, the result scaled linearly with π0. The constant of
proportionality was estimated to be 2.08 percentage points. In summary, if the prior expectation is of
even moderate size (∼ 0.1) that any one CpG among the 100 selected for this application will show
systematic differentiation between cases and controls, then the implied bias would be expected to be less
than a percentage point.
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Figure S1. Bias Sensitivity Analysis for HNSCC. Bias assed by resampling the case coefficients
of B1, an procedure that assumes maximum bias. The x-axis show the number of assumed nonzero
alterations. The red dots indicate median, the thick blue line indicates interquartile range, the thin
lines represent 95% probability ranges, and the outer dots represent 99% probability ranges.

S2.3 Aging and T Cell Methylation

At certain CpG loci, DNA methylation is known to change with age [2], especially in T cells [3]. Con-
sequently, age-related changes in DNA methylation could be another potential source of bias. Figure S2
shows DNA methylation by age in the top 100 CpGs selected for analysis (with a box-plot showing the
age-specific distributions and a line-plot showing DNA methylation by age with data from a single CpG
connected by a line). The figure suggests that variability in methylation across CpGs is greater than that
contributed by age. The clustering heatmap shown in Figure S3, based on z-scores computed by CpG
(row), suggests a similar conclusion. The Spearman correlation between age and specimen-specific mean
methylation (across all 100 CpGs) was 0.07, with p = 0.74 for the corresponding linear regression coeffi-
cient. In addition, we used a recursively partitioned mixture model (RPMM) [4] to cluster the 100 CpGs;
no associations were found between age and the four classes determined by RPMM (ANOVA p = 0.24,
Kruskal-Wallis p = 0.16). Thus we conclude that any age-related associations with DNA methylation in
the top 100 CpGs were too weak to be detected within the current validation sample.

S3 Additional Details Regarding Simulations

S3.1 Additional Notes

The design of our simulations is described in the main paper. However, some additional notes pertain to
the details regarding bias provided in this Supplement. In particular, note that the individual, Dirichlet-
generated subject weights did not necessarily sum to one, but the difference from 1 was not applied as
a multiplier; thus the resulting ξ corresponded to the situation Pµ̃q = 0, where P=̃(B̃T

0 B̃0)−1B̃T
0 , along

with orthogonal contributions from the λ terms of (S2).
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A. Box Plot of DNA Methylation by Age B. Line Plot of DNA Methylation by Age
as function of log10(m) as function of log10(m)
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Figure S2. DNA methylation by Age in T Cells Hm.
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S3.2 Results for Coefficients of Determination

Complete results for the coefficients of determination are provided in Table S1. R2
1,0 decreased with

decreasing strength of the alternative, falling to zero under both null scenarios. For strong alternatives,
R2

1,1 was frequently close to 1.0. For the Mixed Alternative, R2
1,1 had a lower, but still high values ranging

from about 0.85 to 0.90. For the Mixed Null result, R2
1,1 typically had lower values, from about 0.05 to

0.20. In the Strong Null case, R2
1,1 covered a broader range among moderately low values; note, however,

that this scenario effectively represents 0/0, i.e. a poorly defined value.

Table S1. Results for Coefficients of Determination

Median R2
1,0 Median R2

1,1

(Interquartile Range) (Interquartile Range)
Precise Mixtures Strong Alternative I (θ = 0) 0.13 (0.12-0.15) 0.98 (0.97-0.98)
n1 = 200 Strong Alternative II (θ = 0) 0.13 (0.12-0.15) 0.98 (0.97-0.98)

Mixed Alternative (θ = 0.5) 0.04 (0.03-0.05) 0.88 (0.85-0.91)
Mixed Null (θ = 1) 0.00 (0.00-0.00) 0.10 (0.05-0.17)
Strong Null (θ = 0) 0.00 (0.00-0.00) 0.25 (0.15-0.38)

Noisy Mixtures Strong Alternative I (θ = 0) 0.05 (0.03-0.06) 0.98 (0.97-0.98)
n1 = 200 Strong Alternative II (θ = 0) 0.05 (0.03-0.06) 0.98 (0.97-0.98)

Mixed Alternative (θ = 0.5) 0.01 (0.01-0.02) 0.89 (0.81-0.94)
Mixed Null (θ = 1) 0.00 (0.00-0.01) 0.46 (0.28-0.64)
Strong Null (θ = 0) 0.00 (0.00-0.01) 0.72 (0.55-0.85)

S3.3 Additional Simulations

We conducted additional simulations (details not show), which assumed bias arising from processes not
profiled by the profiled leukocytes. For these scenarios, ξ0 was set to µ̂1, and ξ1 = ξ0 except for a set
of CpG sites randomly selected among the m dimensions of the array (once and for all before all 1000
simulations); among those dimensions j, ξ1

j was set to 1 − µ̂1j , reflecting a “reversal” of methylation
state. Estimates were biased towards the null, on the order of about a percentage point

S4 Supplement to Results

S4.1 Selection of CpG Sites

From S0, F statistics Fj = 6−1LTB̂0j·Ω
−1
j B̂T

0j·L, were computed and used to order each of the 26,486 au-
tosomal CpGs by decreasing level of informativeness with respect to blood cell types. Figure S4A depicts
the relationship log10 trHm by log10(m) for increasing array sizes. Figure S4B depicts the relationship
∂ log10 tr(Hm)/∂ log(m) by log10(m) for increasing array sizes, obtained by smoothing the first-differences
of the curve depicted in Figure S4A via loess smoother. Figure S4A also shows the tangent (obtained
from the loess curve) at low values of m. For O(m) convergence, Figure S4A should show a linear asso-
ciation with slope equal to one, while the curve in Figure S4B should show a curve close to the value of
1.0. Neither is the case, i.e. convergence is sub-linear in m. Note that the rate of convergence dropped
precipitously after about 6,000 CpG sites, but was notably slower than O(m) even after m = 10. In
the range of 1-1000 CpG sites the convergence rate appeared parabolic with a minimum of about 0.85,
starting to stabilize in the m = 100− 300 range.
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A. Trace of Information Matrix B. Rate-of-convergence of Informaton matrix
as function of log10(m) as function of log10(m)
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Figure S4. Rate-of-Convergence for Hm. The x-axis represents increasing m, the number of CpG
sites (ordered by F statistic) included in the model-space, on a logarithmic scale. Rate-of-convergence
was calculated by smoothing the first differences of log10(trHm). The dotted red line in (A) shows the
tangent at low values of m, while the dotted red line in (B) corresponds to linear convergence.
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S4.2 Additional Clustering Heatmaps

Figure S5. Clustering Heatmap for Target Ovarian Cancer Data. Yellow = unmethylated
(Yij = 0), black = partially methylated (Yij = 0.5), blue = methylated (Yij = 1). The annotation track
above the heatmap indicates case-control status (orange = cancer case, purple = control).
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Figure S6. Clustering Heatmap for Target Down Syndrome Data. Yellow = unmethylated
(Yij = 0), black = partially methylated (Yij = 0.5), blue = methylated (Yij = 1). The annotation track
above the heatmap indicates case-control and cell type status [orange = Down syndrome case (whole
blood), purple = control (whole blood), white=T-cell (pooled cases and controls)].
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Figure S7. Clustering Heatmap for Target Obesity Data. Yellow = unmethylated (Yij = 0),
black = partially methylated (Yij = 0.5), blue = methylated (Yij = 1). The annotation track above the
heatmap indicates case-control status (orange = obese, purple = lean).
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S4.3 Additional Regression Coefficient Estimates

Table S2. Estimated Regression Coefficients for Sex and Age in HNSCC Data Set

Est Bias2 SE0 SE1 SE2 P-value
Sex (Intercept, γ0) 0.12 0.00 0.24 0.57 0.57 0.83

B Cell 0.38 0.01 0.17 0.85 0.84 0.65
Granulocyte -0.29 -0.08 0.28 1.82 1.81 0.87
Monocyte 0.13 0.01 0.29 0.47 0.47 0.78
NK 0.49 0.05 0.32 0.40 0.40 0.22
T Cell (cd4+) -1.80 0.45 1.12 1.25 1.20 0.13
T Cell (cd8+) 0.82 -0.44 1.12 1.03 1.04 0.43

(Age - 60)/10 (Intercept, γ0) -0.20 -0.02 0.15 0.24 0.24 0.40
B Cell 0.24 0.01 0.11 0.34 0.33 0.47
Granulocyte 1.12 -0.01 0.19 0.67 0.67 0.096
Monocyte 0.13 0.02 0.19 0.20 0.20 0.54
NK -0.22 0.02 0.21 0.15 0.15 0.14
T Cell (cd4+) -2.75 0.56 0.73 0.53 0.57 <0.0001
T Cell (cd8+) 1.44 -0.56 0.73 0.46 0.50 0.0038

Est = Regression coefficient estimate (× 100%)
Bias2 = Double-bootstrap bias estimate (× 100%).
SE0 = Naive standard error (× 100%).
SE1 = Single-bootstrap standard error (× 100%).
SE2 = Double-bootstrap standard error (× 100%).
P-values were computed using SE2.
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Table S3. Estimated Regression Coefficients for Age in Ovarian Cancer Data Set

Est Bias2 SE0 SE1 SE2 P-value
Age 55-60 (Intercept, γ0) -1.24 -0.05 0.37 0.41 0.40 0.0021

B Cell 0.40 0.04 0.27 0.50 0.49 0.42
Granulocyte 0.91 0.04 0.45 2.04 2.02 0.65
Monocyte 0.85 0.12 0.45 0.59 0.58 0.15
NK -0.25 0.10 0.50 0.55 0.55 0.65
T Cell (cd4+) -2.79 0.63 1.76 2.13 1.96 0.15
T Cell (cd8+) 2.22 -0.84 1.77 1.81 1.59 0.16

Age 60-65 (Intercept, γ0) -0.72 -0.07 0.35 0.39 0.39 0.070
B Cell 0.54 0.07 0.25 0.49 0.49 0.27
Granulocyte 0.71 0.06 0.42 1.99 1.98 0.72
Monocyte 0.27 0.08 0.42 0.58 0.58 0.64
NK -0.24 0.06 0.47 0.55 0.55 0.65
T Cell (cd4+) -3.54 0.80 1.66 2.02 1.97 0.072
T Cell (cd8+) 2.84 -0.97 1.66 1.85 1.64 0.084

Age 65-70 (Intercept, γ0) -0.53 -0.08 0.40 0.41 0.41 0.19
B Cell -0.03 0.07 0.29 0.51 0.51 0.96
Granulocyte 2.46 0.02 0.48 2.17 2.17 0.26
Monocyte 0.85 0.12 0.48 0.64 0.64 0.18
NK -0.89 0.07 0.54 0.59 0.60 0.14
T Cell (cd4+) -6.12 1.48 1.89 2.18 2.12 0.0038
T Cell (cd8+) 4.37 -1.64 1.89 1.87 1.71 0.011

Age 70-75 (Intercept, γ0) -1.20 -0.07 0.40 0.41 0.41 0.0037
B Cell 0.29 0.07 0.29 0.48 0.48 0.55
Granulocyte 2.13 -0.05 0.48 2.05 2.04 0.30
Monocyte 0.76 0.12 0.48 0.60 0.60 0.21
NK -0.51 0.19 0.54 0.56 0.55 0.36
T Cell (cd4+) -6.82 1.97 1.89 2.16 2.12 0.0013
T Cell (cd8+) 5.35 -2.20 1.90 1.89 1.79 0.0028

Age 75+ (Intercept, γ0) -0.31 -0.09 0.49 0.46 0.45 0.49
B Cell 0.13 0.08 0.35 0.54 0.53 0.81
Granulocyte 1.10 -0.15 0.58 2.12 2.11 0.60
Monocyte 1.73 0.12 0.59 0.64 0.63 0.0065
NK -0.30 0.13 0.66 0.60 0.59 0.61
T Cell (cd4+) -6.54 1.31 2.30 2.29 2.18 0.0027
T Cell (cd8+) 2.73 -1.37 2.31 2.06 1.86 0.14

Est = Regression coefficient estimate (× 100%)
Bias2 = Double-bootstrap bias estimate (× 100%).
SE0 = Naive standard error (× 100%).
SE1 = Single-bootstrap standard error (× 100%).
SE2 = Double-bootstrap standard error (× 100%).
P-values were computed using SE2.
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Table S4. Estimated Regression Coefficients for Bisulfite Conversion in Ovarian Cancer
Data Set

Est Bias2 SE0 SE1 SE2 P-value
BSC1 (Intercept, γ0) -0.08 0.00 0.14 0.09 0.10 0.39
(Green B Cell -0.10 0.00 0.10 0.10 0.10 0.30
/1000) Granulocyte 0.13 0.04 0.17 0.40 0.40 0.74

Monocyte 0.13 -0.01 0.17 0.12 0.12 0.26
NK -0.09 0.00 0.19 0.14 0.14 0.53
T Cell (cd4+) 0.51 -0.14 0.65 0.48 0.51 0.32
T Cell (cd8+) -0.23 0.11 0.66 0.40 0.47 0.62

BSC2 (Intercept, γ0) 0.25 0.00 0.14 0.08 0.08 0.0027
(Green B Cell 0.07 0.00 0.10 0.08 0.08 0.40
/1000) Granulocyte 0.07 0.01 0.17 0.38 0.37 0.84

Monocyte -0.18 0.01 0.17 0.10 0.10 0.075
NK 0.10 0.00 0.19 0.12 0.12 0.41
T Cell (cd4+) -0.65 0.20 0.67 0.41 0.50 0.20
T Cell (cd8+) 0.63 -0.21 0.68 0.34 0.45 0.16

Est = Regression coefficient estimate (× 100%)
Bias2 = Double-bootstrap bias estimate (× 100%).
SE0 = Naive standard error (× 100%).
SE1 = Single-bootstrap standard error (× 100%).
SE2 = Double-bootstrap standard error (× 100%).
P-values were computed using SE2.
Note that coefficients are given as % / 1000 units fluorescence, and that standard deviations for BSC1
and BSC2 were 1950 and 2169, respectively.
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Table S5. Estimates for Down Syndrome Analysis (Case vs. Control, Total Leukocyte vs.
T Cell)

Est Bias2 SE0 SE1 SE2 P-value
Case Status (Intercept, γ0) 2.02 -0.10 0.86 1.17 1.17 0.084
(total leukocytes) B Cell -4.87 -0.03 0.62 0.70 0.69 <0.0001

Granulocyte 3.85 0.15 1.02 3.01 2.98 0.20
Monocyte 0.12 0.11 1.03 0.97 0.96 0.90
NK -0.63 -0.06 1.16 0.83 0.82 0.44
T Cell (cd4+) -0.30 -0.37 4.02 2.49 2.66 0.91
T Cell (cd8+) -1.89 0.35 4.03 2.47 2.42 0.43

T Cell (Intercept, γ0) -0.97 0.07 1.7 1.4 1.6 0.54
(cases+controls) B Cell -0.51 0.02 1.2 1.2 1.2 0.67

Granulocyte -56.21 0.49 2.1 3.4 3.4 <0.0001
Monocyte -5.13 -0.37 2.1 1.1 1.3 <0.0001
NK 0.07 0.34 2.3 1.5 1.7 0.97
T Cell (cd4+) 60.18 -2.89 8.1 3.2 5.2 <0.0001
T Cell (cd8+) 3.00 2.34 8.2 3.3 5.4 0.58

Est = Regression coefficient estimate (× 100%).
Bias2 = Double-bootstrap bias estimate (× 100%).
SE0 = Naive standard error (× 100%).
SE1 = Single-bootstrap standard error (× 100%).
SE2 = Double-bootstrap standard error (× 100%).
P-values were computed using SE2.

Table S6. Estimated Regression Coefficients for Data Set concerning Obesity in African
Americans

Est Bias2 SE0 SE1 SE2 P-value
Obese (Intercept, γ0) 0.96 -0.09 1.08 0.85 0.84 0.25

B Cell 0.70 -0.03 0.78 1.16 1.14 0.54
Granulocyte 12.25 0.51 1.30 4.27 4.27 0.0041
Monocyte -0.70 -0.01 1.31 1.57 1.54 0.65
NK -4.42 -0.13 1.46 1.75 1.73 0.011
T Cell (cd4+) -6.97 -0.29 5.11 6.27 5.49 0.20
T Cell (cd8+) -2.29 0.22 5.13 4.97 4.36 0.60

Est = Regression coefficient estimate (× 100%).
Bias2 = Double-bootstrap bias estimate (× 100%).
SE0 = Naive standard error (× 100%).
SE1 = Single-bootstrap standard error (× 100%).
SE2 = Double-bootstrap standard error (× 100%).
P-values were computed using SE2.
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S5 Analysis of Intercepts

If the subject population for which z = 0 is sufficiently homogeneous with respect to blood cell distribution
to admit sensible characterization of that distribution, then it is possible to recover estimates from Γ̂.
Table S7 displays the results of such an analysis applied to the HNSCC case/control data set. If the
coefficients represented a complete profiling of blood cell types, the estimates should sum approximately
to one, even though the model does not explicitly constrain them so. In this case, the original bias-
corrected estimates (of leukocyte distribution in HNSCC controls) summed to 133%. The table shows
the values re-normalized to 90%, the anticipated proportion of the cell types. The resulting estimated
distribution of leukocytes is consistent with the literature [5].

Table S7. White Blood Cell Distribution in HNSCC Controls

Est SE2 Bias2 BC-Est 95% Conf. Int.
B-Cell 7.9 0.5 0.1 7.8 (6.8, 8.9)
Granulocyte 42.2 1.2 -0.1 42.3 (39.9, 44.6)
Monocyte 9.9 0.7 0.3 9.6 (8.3, 10.9)
NK 7.9 0.7 0.2 7.7 (6.3, 9.1)
T Cell (cd4+) 15.2 3.0 -0.1 15.3 (9.5, 21.2)
T Cell (cd8+) 7.6 3.0 0.4 7.2 (1.4, 13.0)

Est = Regression coefficient estimate (× 100%), normalized so that estimates sum to 90%.
SE2 = Double-bootstrap standard error (× 100%).
Bias2 = Double-bootstrap bias estimate (× 100%).
BC-Est = bias-corrected estimate.
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S6 Application of Proposed Methodology to mRNA Data

Numerous authors have proposed immunological explanations for differences in mRNA profiles between
cases and controls, e.g. Showe et al. (2009) [6] and Kossenkov et al. (2011) [7]. The statistical principles
described in this article would apply, wholesale, to mRNA expression profiles, but with two cautionary
statements. The first is mathematical: mRNA is typically analyzed on a logarithmic scale, yet the
assumptions of the proposed methodology involve linearity on an arithmetic scale, since the mixing
coefficients are assumed to act linearly on absolute numbers of nucleic acid molecules; thus, the proposed
methods would require analysis of untransformed fluorescence intensities, whose skewed distributions
would result in numerical instabilities. The second is biological: there is no necessarily linear relationship
between cell number and mRNA copies, since proteins may be translated as a consequence of an initial
burst of mRNA transcription upon cellular development, after which significant mRNA degradation is
possible. In contrast, one would expect the average beta value provided by Illumina bead-array products,
as well as similarly constructed quantities from other platforms, to scale in proportion to the actual
fraction of methylated nucleic acids; in addition, an assumption of two DNA molecules per cell seems
biologically reasonable.

Nevertheless, we provide an example of an application of our methods using mRNA data. The
validation data set S0 was obtained from Ref. [8], who employed the Illumina Human-6 v2 Expression
BeadChip to characterize the mRNA expresion profile of 8 types of blood cells: B cells, granulocytes,
erythroblasts, megakaryocytes, monocytes, natural killer cells, cd4+ T cells, and cd8+ T cells. For
this analysis we removed erythroblasts (nucleated progenitors of red blood cells) and megakaryocytes
(progenitors of platelets). The target data set S1 was obtained from Ref. [6], who used the same mRNA
expression platform to characterize expression differences in isolated mononuclear cells between nonsmall
cell lung cancer (NSCLC) cases and controls having non-cancer lung disease, adjusting for age, sex and
smoking. In addition, they present data from 18 matched case samples, pre- and post-operative.

We employed the same methodology as for the DNA methylation data sets, ordering the 46,693
transcripts by F statistic according to their ability to distinguish six types of leukocytes. 86 of the 100
transcripts having the largest F statistics overlapped with the transcripts made available by Ref. [6].
Thus we applied the remainder of the analysis using the 86 overlapping loci. In all analyses, we used
untransformed data (i.e. using either the normalized fluorescence intensities or 2 raised to the power of
the normalized log2 intensities). Application of the constrained projection proposed in Section 2 of the
main article resulted in an average percentage estimates somewhat consistent with mononuclear cells (i.e.
a subfraction with most granulocytes removed): 3.3% B cell, 3.4% granulocyte, 18.1% monocyte, 29.5 %
NK cell, 11.6 CD4+ T cell, and 2.2 % CD8+ T cell.

Table S8 presents results from 137 NSCLC cases and 91 controls, adjusted for age, sex, and smoking
status. Table S9 presents results from 18 matched pre-operative and post-operative samples from NSCLC
cases, where the analyzed outcome was the difference in untransformed expression (post-operative ex-
pression minus pre-operative expression), and coefficients displayed correspond to the intercept of B1

(analogous to a paired t-test). Perturbations in T-cell distribution are consistent with known immuno-
logical changes resulting from NSCLC [9, 10], as well as age and smoking. While the perturbations
and coefficient signs seem reasonable, the magnitudes are potentially quite biased. For example, the
estimates corresponding to granulocyte distribution are much larger than one would expect given the
relatively small number of granulocytes present in a monouclear subfraction. Thus, while it is possible
to employ our proposed methodology on mRNA data sets, we are much less confident that the method
will produce reliable results, given the physical and mathematical limitations of mRNA compared with
DNA methylation.
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Table S8. White Blood Cell Distribution Comparing Cases to Controls in HNSCC mRNA
Data Set

Est SE2 p-value
Case Status
B Cell 0.8 4.15 0.8511
Granulocyte -34.6 9.48 0.0003
Monocyte 17.9 9.58 0.0613
NK 1.3 5.18 0.8095
T Cell (cd4+) 24.9 9.01 0.0057
T Cell (cd8+) -15.2 9.03 0.0931
Age (decades)
B Cell -0.7 1.36 0.5824
Granulocyte -7.9 3.45 0.0218
Monocyte -6.5 2.76 0.0180
NK -4.0 1.80 0.0255
T Cell (cd4+) 13.0 2.89 0.0000
T Cell (cd8+) 8.3 2.96 0.0052
Sex (male)
B Cell 0.1 2.66 0.9827
Granulocyte -34.8 6.41 0.0000
Monocyte 6.8 5.44 0.2091
NK -7.8 3.32 0.0193
T Cell (cd4+) 21.1 5.39 0.0001
T Cell (cd8+) 13.2 5.76 0.0223
Former Smoker
B Cell 1.6 3.97 0.6821
Granulocyte 17.2 8.25 0.0375
Monocyte 6.1 7.84 0.4368
NK 2.7 5.19 0.6103
T Cell (cd4+) -11.3 8.02 0.1578
T Cell (cd8+) -20.3 8.28 0.0141
Current Smoker
B Cell 3.4 5.21 0.5183
Granulocyte 31.6 11.26 0.0049
Monocyte 17.8 10.49 0.0907
NK 5.4 6.93 0.4373
T Cell (cd4+) -21.8 10.25 0.0337
T Cell (cd8+) -41.2 11.10 0.0002

Est = Regression coefficient estimate (× 100%)
SE2 = Double-bootstrap standard error (× 100%).
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Table S9. White Blood Cell Distribution Comparing Matched Pre-operative and
Post-operative Cases in HNSCC mRNA Data Set

Est SE2 p-value
B Cell -10.7 5.55 0.0543
Granulocyte -19.4 11.16 0.0826
Monocyte -13.4 10.43 0.1987
NK 6.3 7.15 0.3794
T Cell (cd4+) -11.3 10.57 0.2859
T Cell (cd8+) 48.8 11.33 0.0000

Est = Regression coefficient estimate (× 100%)
SE2 = Double-bootstrap standard error (× 100%).
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